In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. Choosing informative, discriminating, and independent features is crucial to produce effective for pattern recognition, classification, and regression tasks. Features are usually numeric, but other types such as strings and graphs are used in syntactic pattern recognition, after some pre-processing step such as One-hot. The concept of "features" is related to that of explanatory variables used in statistical techniques such as linear regression.
Numerical features are continuous values that can be measured on a scale. Examples of numerical features include age, height, weight, and income. Numerical features can be used in machine learning algorithms directly.
Categorical features are discrete values that can be grouped into categories. Examples of categorical features include gender, color, and zip code. Categorical features typically need to be converted to numerical features before they can be used in machine learning algorithms. This can be done using a variety of techniques, such as one-hot encoding, label encoding, and ordinal encoding.
The type of feature that is used in feature engineering depends on the specific machine learning algorithm that is being used. Some machine learning algorithms, such as decision trees, can handle both numerical and categorical features. Other machine learning algorithms, such as linear regression, can only handle numerical features.
Algorithms for classification from a feature vector include nearest neighbor classification, neural networks, and statistical techniques such as Bayesian approaches.
In speech recognition, features for recognizing phonemes can include noise ratios, length of sounds, relative power, filter matches and many others.
In spam detection algorithms, features may include the presence or absence of certain email headers, the email structure, the language, the frequency of specific terms, the grammatical correctness of the text.
In computer vision, there are a large number of possible features, such as edges and objects.
The vector space associated with these vectors is often called the feature space. In order to reduce the dimensionality of the feature space, a number of dimensionality reduction techniques can be employed.
Higher-level features can be obtained from already available features and added to the feature vector; for example, for the study of diseases the feature 'Age' is useful and is defined as Age = 'Year of death' minus 'Year of birth' . This process is referred to as feature construction.Liu, H., Motoda H. (1998) Feature Selection for Knowledge Discovery and Data Mining., Kluwer Academic Publishers. Norwell, MA, USA. 1998.Piramuthu, S., Sikora R. T. Iterative feature construction for improving inductive learning algorithms. In Journal of Expert Systems with Applications. Vol. 36 , Iss. 2 (March 2009), pp. 3401-3406, 2009 Feature construction is the application of a set of constructive operators to a set of existing features resulting in construction of new features. Examples of such constructive operators include checking for the equality conditions {=, ≠}, the arithmetic operators {+,−,×, /}, the array operators {max(S), min(S), average(S)} as well as other more sophisticated operators, for example count(S,C)Bloedorn, E., Michalski, R. Data-driven constructive induction: a methodology and its applications. IEEE Intelligent Systems, Special issue on Feature Transformation and Subset Selection, pp. 30-37, March/April, 1998 that counts the number of features in the feature vector S satisfying some condition C or, for example, distances to other recognition classes generalized by some accepting device. Feature construction has long been considered a powerful tool for increasing both accuracy and understanding of structure, particularly in high-dimensional problems.Breiman, L. Friedman, T., Olshen, R., Stone, C. (1984) Classification and regression trees, Wadsworth Applications include studies of disease and emotion recognition from speech.Sidorova, J., Badia T. Syntactic learning for ESEDA.1, tool for enhanced speech emotion detection and analysis. Internet Technology and Secured Transactions Conference 2009 (ICITST-2009), London, November 9–12. IEEE
Extracting or selecting features is a combination of art and science; developing systems to do so is known as feature engineering. It requires the experimentation of multiple possibilities and the combination of automated techniques with the intuition and knowledge of the domain expert. Automating this process is feature learning, where a machine not only uses features for learning, but learns the features itself.
|
|